来源:36365线路检测中心no1 发布时间:2024-09-11 作者: 阅读数:32次
报告题目:Local Limit Theorem for Linear Random Fields
报告人:美国密歇根州立大学统计与概率系肖益民教授
报告时间:2024年9月19日上午10:00-11:30
报告地点:9教326
报告内容:
We consider linear random fields (also called spatial) when i.i.d. innovations that have infinite second moment and belong to the domain of attraction of a stable law with index 0 < α ≤ 2 and establish local limit theorems for their partial sums. When the coefficients of the linear random field are absolutely summable (the short memory case), the regions of summation for the partial sums can be taken arbitrarily. However, when the coefficients are not absolutely summable (the long memory case), the partial sums are defined over unions of rectangles.The main results are applicable to spatial fractional ARIMA models and linear random fields with isotropic or anisotropic coefficients.
报告人简介:
肖益民,美国密歇根州立大学统计与概率系终身教授,国际著名概率统计专家。主要从事随机场及随机偏微分方程、分形几何、位势理论、随机场的极值理论、空间统计、非参数估计方面的研究,取得了一系列具有国际先进水平的重要成果,促进了随机场理论在其它领域中的应用。现担任SCI杂志《Statistics and Probability Letters》共同主编,同时还是SCI杂志《Science in China, Mathematics》,《Illinois Journal of Mathematics》的编委,也是许多国际一流数学杂志的审稿人,如《Annals of Probability》、《Annals of Applied Probability》、《Transactions of the AMS》、《Probability Theory and Related Fields》、《Journal of London Mathematical Society》等。多次担任美国国家自然科学基金概率和统计项目评审小组成员,以及加拿大、瑞士、德国、香港等国家和地区自然科学基金评审人。